随着社交软件和多媒体技术的持续发展,图像已成为传播信息和社交的重要载体。如何全面评估图像已成为最近研究的重点。传统的图像美学评估方法通常采用单个数值总体评估评分,该评估具有一定的主观性,无法再满足更高的美学要求。在本文中,我们构建了一个称为Aesthetic混合数据集的新图像属性数据集,该数据集具有属性(AMD-A)和设计融合的外部属性功能。此外,我们还提出了一种有效的方法,用于在混合多属性数据集上进行图像美学属性评估,并通过使用ExtisticNet-B0作为骨干网络来构建多任务网络体系结构。我们的模型可以实现美学分类,整体评分和属性评分。在每个子网络中,我们通过ECA通道注意模块改进特征提取。至于最终的整体评分,我们采用了教师学习网络的想法,并使用分类子网络来指导美学的整体细粒回归。实验结果,使用思维螺旋式的结果表明,我们提出的方法可以有效地改善美学整体和属性评估的性能。
translated by 谷歌翻译
重要性采样(IS)是非政策评估中的一种流行技术,它重新赋予了重播缓冲液中轨迹的回归以提高样本效率。但是,对IS进行培训可能是不稳定的,以前试图解决此问题的尝试主要集中于分析IS的差异。在本文中,我们揭示了不稳定性与IS的重复使用偏见的新概念有关 - 由重复使用缓冲液重用进行评估和优化引起的非政策评估偏差。从理论上讲,我们证明了对当前策略的非政策评估和优化,并通过重播缓冲区的数据导致目标高估,这可能会导致错误的梯度更新并退化性能。我们进一步提供了重复使用偏差的高概率上限,并表明控制上限的一个项可以通过引入非政策算法的稳定性概念来控制重复使用偏置。基于这些分析,我们最终提出了一种新颖的偏见调查重要性抽样(BIRIS)框架以及实际算法,可以减轻重复使用偏见的负面影响。实验结果表明,我们基于BIRIS的方法可以显着提高一系列连续控制任务的样品效率。
translated by 谷歌翻译
视觉导航中体现的代理以及深度神经网络引起了越来越多的关注。但是,深层神经网络容易受到恶意的对抗噪声的影响,这可能会导致视力导航的灾难性失败。在这些对抗性噪声中,通用的对抗扰动(UAP),即代理接收到的每个帧应用的图像无关扰动,对于体现视觉导航而言更为重要,因为它们是攻击过程中计算效率和应用程序实行的。但是,现有的UAP方法不考虑具体视觉导航的系统动力学。为了在连续决策设置中扩展UAP,我们将Universal Noise $ \ delta $下的不受欢迎的环境制定为$ \ delta $ distant的马尔可夫决策过程($ \ delta $ -MDP)。基于该公式,我们分析了$ \ delta $ -MDP的性质,并提出了两种新型的一致攻击方法,用于攻击体现剂,它们首先通过估计受干扰的Q函数和干扰分布来考虑MDP的动态。尽管有受害者模型,但我们一致的攻击可能会导致栖息地目标任务的绩效大大下降。广泛的实验结果表明,将具体视觉导航方法应用于现实世界中存在潜在的风险。
translated by 谷歌翻译
尽管深度强化学习(DRL)取得了巨大的成功,但由于过渡和观察的内在不确定性,它可能遇到灾难性的失败。大多数现有的安全加固学习方法只能处理过渡干扰或观察障碍,因为这两种干扰影响了代理的不同部分。此外,受欢迎的最坏情况可能会导致过度悲观的政策。为了解决这些问题,我们首先从理论上证明了在过渡干扰和观察障碍下的性能降解取决于一个新颖的价值函数范围(VFR),这与最佳状态和最坏状态之间的价值函数的间隙相对应。基于分析,我们采用有条件的价值风险(CVAR)作为对风险的评估,并提出了一种新颖的强化学习算法的CVAR-Proximal-Policy-oftimization(CPPO),该算法通过保持风险敏感的约束优化问题形式化。它的CVAR在给定的阈值下。实验结果表明,CPPO获得了更高的累积奖励,并且在Mujoco中一系列连续控制任务上的观察和过渡干扰更加强大。
translated by 谷歌翻译
深增强学习模型容易受到对抗的攻击,可以通过操纵受害者的观察来减少受害者的累积预期奖励。尽管以前的优化基于优化的方法效率,用于在监督学习中产生对抗性噪声,因此这些方法可能无法实现最低的累积奖励,因为它们通常不会探索环境动态。在本文中,我们提供了一个框架,以通过重新制定函数空间中加固学习的对抗攻击问题来更好地了解现有方法。我们的重构在有针对性攻击的功能空间中产生最佳对手,通过通用的两级框架来排斥它们。在第一阶段,我们通过黑客攻击环境来培训欺骗性政策,并发现一组轨迹路由到最低奖励或最坏情况性能。接下来,对手误导受害者通过扰乱观察来模仿欺骗性政策。与现有方法相比,我们理论上表明我们的对手在适当的噪声水平下更强大。广泛的实验展示了我们在效率和效力方面的优越性,在Atari和Mujoco环境中实现了最先进的性能。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译